
1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 1/11

Event-Condition-Action Rule Execution for
Transactional Queues
Using ECA rules for acting on messages in transactional queueing

This blog discusses an approach to execute ECA (Event-Condition-Action) rules on JSON
objects within database transactions in PostgreSQL — specifically on transactional queues.
This guarantees exactly once execution and consistency of rule execution in case of failures
(independent of the underlying reason).

Background
ECA rules is an established concept in the active database domain
(https://en.wikipedia.org/wiki/Event_condition_action). The three elements of ECA rules
are

Event. An event is one or more changes in the database, for example, an insert or
update or deletion of a row in a table.

Condition. A condition is a predicate that evaluates to TRUE or FALSE and that is

evaluated on the changes that caused an event.

Action. An action is a directive or code execution initiated when the condition
evaluates to TRUE .

A familiar implementation are database triggers where the change that the trigger listens to
is an event, the condition is the WHEN clause (in PostgreSQL syntax), and the action is a

function being invoked when the condition applies.

In PostgreSQL triggers are executed in the same transaction that made the changes to the
database that caused the trigger to execute. Several triggers can apply to a change and those
are all executed in the same transaction.

ECA applied to transactional queues
An important application of the ECA rule concept is to queues and to messages within
queues. The blog Implementing Queues in PostgreSQL (Part 1: Design and

https://en.wikipedia.org/wiki/Event_condition_action
https://medium.com/@chbussler/implementing-queues-in-postgresql-3f6e9ab724fa

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 2/11

Measurement) shows an implementation of a transactional message queue within a
database.

In context of this blog a message represents an event that consists of three elements

Event identifier. This is a unique identifier for an event.

Event name. An event has a name. The event name is used to select all ECA rules that
refer to the same name. The conditions of the selected ECA rules will be used for
evaluation.

Event payload. This is a JSON object of arbitrary schema.

Instead of dequeuing each event and acting on it (classical dequeue operation), some use
cases require actions based on the event payload’s values evaluated by a predicate. In
addition, several actions for each event are possible if there are different predicates that
need to be evaluated for one event.

Therefore, for a given event there might be zero, one or more actions. If there is no action
for an event because no predicate applied it is often important that this is noted in the
system for possible downstream analysis.

Overview
This blog demonstrates one approach of executing predicates on events with JSON
payloads and deriving the corresponding actions. ECA rules are explicitly managed as data
in a table, and not implemented directly as database triggers themselves.

The table eca stores all ECA rules in scope. An ECA rule has an identifier, an event name, a

condition, and an action. Since ECA rules are represented as data in a table they are
managed by insert, update or delete operations like any other data.

When an event is inserted into the event table (enqueue), an insert trigger initiates the ECA

rule evaluation on the event of all rules that are stored in the eca table. For each matching

ECA rule the corresponding action is stored with the event payload in an action table that

can be accessed by downstream processors.

https://medium.com/@chbussler/implementing-queues-in-postgresql-3f6e9ab724fa

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 3/11

After ECA rule execution the event is moved into an event_history table. If no ECA rule

matched, the event is moved into an event_unmatched table. Each event therefore is either in

the event history or in the set of unmatched events after it has been processed.

Database tables

ECA table

The eca table is specified as follows:

CREATE TABLE eca

(

 eca_id UUID NOT NULL
 CONSTRAINT eca_id_pk

 PRIMARY KEY,
 eca_condition VARCHAR NOT NULL,

 eca_action_name VARCHAR NOT NULL,

 eca_event_name VARCHAR NOT NULL
);

The eca_condition column contains valid SQL predicates that are evaluated against the

event payload. An example is introduced below to visualize values in the various columns.

Indexes are not shown, for example, on eca_event_name , the column that is used to match

with an incoming event based on its event_name .

Event table

The event table is specified as follows:

CREATE TABLE event
(

 event_id UUID NOT NULL

 CONSTRAINT event_id_pk
 PRIMARY KEY,

 event_payload JSONB,

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 4/11

 event_name VARCHAR NOT NULL

);

The event_payload is of type JSONB since an eca_condition might be a complex expression

accessing different JSON properties. A binary representation at time of evaluation improves
the execution duration.

Indexes are not shown, like for example a GIN index on event_payload in order to make

access more efficient. The usefulness of an index depends on your particular use case and
should be based on measurement.

Action table

If an event has at least one ECA rule for which the condition evaluates
to TRUE the event_payload from the event, and the action_name from the ECA rule are

inserted into an action table.

CREATE TABLE action

(
 action_id UUID NOT NULL

 CONSTRAINT action_id_pk

 PRIMARY KEY,
 action_name VARCHAR NOT NULL,

 action_payload JSONB
);

This table is very simple right now in order to only show the ECA rule semantics. In a
product environment this table is used to trigger executions of applications or microservices
to execute the action.

To maintain event arrival order (if that is required) a column is needed that captures the
event arrival time. If the execution status of the action is to be managed, another column
can contain the action execution status.

Event history and unmatched event table

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 5/11

After events are processed they are either moved to an event_history table or

an event_unmatched table containing events that were not matched by an ECA rule:

CREATE TABLE event_history

(
 event_id UUID NOT NULL

 CONSTRAINT event_history_id_pk
 PRIMARY KEY,

 event_payload JSONB,

 event_name VARCHAR NOT NULL
);

CREATE TABLE event_unmatched

(
 event_id UUID NOT NULL

 CONSTRATIN event_unmatched_id_pk
 PRIMARY KEY,

 event_payload JSONB,

 event_name VARCHAR NOT NULL
);

After execution of one or more ECA rules for an event, the event is removed from
the event table and resides either in the event_history table or the event_unmatched table.

The latter table is not necessary for ECA rule execution. It is in place for debugging
purposes to ensure that unmatched events are a valid outcome in the given use case. If that
is not the case, this table can be used for observing unmatched events and subsequently
improve the ECA rules so that these exceptions can be addressed.

evaluate() function
Executing an eca_condition on an event_payload is done by using the evaluate() function

introduced here: evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part
1).

The function evaluate() has the following signature:

https://medium.com/towardsdev/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 6/11

evaluate(object jsonb, expression varchar) returns boolean;

In this blog’s use case of ECA rule execution the actual parameter value for object is

the event_payload , and the actual parameter value for expression is the eca_condition .

If evaluate() returns TRUE the eca_condition matches, otherwise it does not.

ECA rule execution
ECA rules are executed as follows for an inserted event into the event table:

1. Select all eca rules for the event_name

2. For each eca rule found, execute evaluate() using event_payload and eca_condition

3. For each matching ECA rule, insert a row in action with eca_action and event_payload

4. If there was at least one ECA rule found (matching or not), move
the event to event_history

5. If there was no ECA rule found at all, move the event to event_unmatched

This algorithm is implemented as a function triggered by an AFTER INSERT trigger on event .

The full algorithm is shown at the end in the Appendix.

Example
The following example is taken from evaluate() PostgreSQL Function for Evaluating Stored
Expressions (Part 1) and refactored as an example for queueing:

New car model notifications arrive as events

ECA rules specify notifications as actions, and their priority depends on a car’s
specification

The following shows the ECA rules:

https://medium.com/towardsdev/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 7/11

INSERT INTO eca (eca_id, eca_condition,

 eca_action_name, eca_event_name)
VALUES (gen_random_uuid(),

 '(object -> ''horsepower'')::int > 1000',

 'NOTIFY_HIGH_PRIORITY',
 'NEW_CAR');

INSERT INTO eca (eca_id, eca_condition,

 eca_action_name, eca_event_name)

VALUES (gen_random_uuid(),
 '(object -> ''price'')::int < 100000 and

 object ->> ''color'' = ''silver'' ',
 'NOTIFY_NORMAL_PRIORITY',

 'NEW_CAR');

Note that an explicit cast to int is necessary for the correct execution. Note also that the

predicate refers to the values using object as the parameter of the evaluate() function is

named object .

Here are two sample events:

INSERT INTO event (event_id, event_payload, event_name)
VALUES (gen_random_uuid(),

 '{"make": "Koenigsegg",
 "model": "CC850",

 "color": "silver",

 "horsepower": 1385,
 "price": 3650000}',

 'NEW_CAR');

INSERT INTO event (event_id, event_payload, event_name)
VALUES (gen_random_uuid(),

 '{"make": "Honda",

 "model": "Jazz",
 "color": "silver",

 "horsepower": 0,
 "price": 21394}',

 'NEW_CAR');

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 8/11

After the two events are inserted, this is the status of the action table and

the event_history table:

SELECT * FROM action;

| action_id | action_name | action_payload |

+-----------+------------------------+------------------------+
| 5f640... | NOTIFY_HIGH_PRIORITY | {"make": "Koenigsegg", |

| | | "color": "silver", |

| | | "model": "CC850", |
| | | "price": 3650000, |

| | | "horsepower": 1385} |
+-----------+------------------------+------------------------+

| de179... | NOTIFY_NORMAL_PRIORITY | {"make": "Honda", |
| | | "color": "silver", |

| | | "model": "Jazz", |

| | | "price": 21394, |
| | | "horsepower": 0} |

+-----------+------------------------+------------------------+

SELECT * FROM event_history;

| event_id | event_payload | event_name |

+----------+------------------------+------------+
| 9d1d... | {"make": "Koenigsegg", | NEW_CAR |

| | "color": "silver", | |
| | "model": "CC850", | |

| | "price": 3650000, | |

| | "horsepower": 1385} | |
+----------+------------------------+------------+

| 6f9a... | {"make": "Honda", | NEW_CAR |
| | "color": "silver", | |

| | "model": "Jazz", | |

| | "price": 21394, | |
| | "horsepower": 0} | |

+----------+------------------------+------------+

Design considerations

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 9/11

Event names as well as action names should be database supervised and not just
implemented as datatype VARCHAR . In most cases they are fixed enumerations, but in some

they are dynamically changed. Implementations are therefore use case specific, for
example, as checked constraints, or values in table containing the currently specified values.

The SQL predicates in the column eca_condition should be checked for syntactic

correctness as shown here evaluate() PostgreSQL Function for Evaluating Stored
Expressions (Part 2). This ensures that there are no runtime errors due to incorrect
predicate syntax.

The event payload is moved between tables and also replicated (for example, in the action
and history tables in case of a matching event). A possible design change is to store the
event payload in a separate event payload table and use foreign key references to refer to
the payload instead of replicating it by value. This avoids duplication and moving of
potentially many large values.

Table maintenance is required since the action , event_history and event_unmatched tables

grow continuously. Regular and periodic maintenance is important to restrict the tables’
growth and keep those below a set limit.

Summary
This blog demonstrates an implementation of an Event-Condition-Action rule (ECA)
system in the context of transactional queueing in PostgreSQL. ECA rules are managed as
data and transactionally executed in order to derive actions to be taken on event arrival
based on the specified ECA rules. The blog discusses detailed table and function
specifications and provides an example.

Appendix — ECA rule evaluation function
The following listing shows the insert trigger and the invoked functions in order to execute
ECA rules as specified in the eca table.

CREATE OR REPLACE FUNCTION evaluate_eca_rules()

 RETURNS TRIGGER
 LANGUAGE plpgsql

AS

https://medium.com/towardsdev/evaluate-postgresql-function-for-evaluating-stored-expressions-part-2-6a3ca364e46a

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 10/11

$$

DECLARE
 v_action RECORD;

 v_eca_found BOOLEAN;
BEGIN

 v_eca_found = FALSE;

 FOR v_action IN (SELECT eca_action_name,
 event_payload

 FROM determine_actions(
 NEW.event_name,

 NEW.event_payload))

 LOOP
 IF v_eca_found IS FALSE

 THEN
 v_eca_found = TRUE;

 END IF;

 INSERT INTO action (action_id,

 action_name,
 action_payload)

 VALUES (gen_random_uuid(),
 v_action.eca_action_name,

 v_action.event_payload);

 END LOOP;

 IF v_eca_found IS FALSE
 THEN

 -- Move event to unmatched table

 INSERT INTO event_unmatched (event_id,
 event_payload,

 event_name)
 VALUES (NEW.event_id,

 NEW.event_payload,

 NEW.event_name);
 ELSE

 -- Move event into history table
 INSERT INTO event_history (event_id,

 event_payload,

 event_name)
 VALUES (NEW.event_id,

 NEW.event_payload,
 NEW.event_name);

 END IF;

 DELETE FROM event WHERE event_id = NEW.event_id;

 RETURN NEW;

END;

$$;

1/25/23, 9:11 PM Event-Condition-Action Rule Execution for Transactional Queues | by Christoph Bussler | Jan, 2023 | Medium

https://chbussler.medium.com/event-condition-action-rule-execution-for-transactional-queues-d454b5896170 11/11

CREATE OR REPLACE FUNCTION determine_actions(

 p_new_event_name VARCHAR,
 p_new_event_payload JSONB)

 RETURNS TABLE
 (

 eca_action_name VARCHAR,

 event_payload JSONB
)

 LANGUAGE plpgsql
AS

$$

BEGIN
 RETURN QUERY SELECT eca.eca_action_name,

 p_new_event_payload
 FROM eca

 WHERE eca.eca_event_name = p_new_event_name

 AND evaluate_schema.evaluate(
 p_new_event_payload,

 eca.eca_condition) = TRUE;
END

$$;

DROP TRIGGER IF EXISTS evaluate_eca_after_insert_event ON event;

CREATE TRIGGER evaluate_eca_after_insert_event

 AFTER INSERT
 ON event

 FOR EACH ROW

EXECUTE FUNCTION evaluate_eca_rules();

